Empirical performance of polycrystalline silicon pixel circuit components for monolithic, large-area photon counting arrays

Author:

Liang Albert K,Koniczek Martin,El-Mohri Youcef,Zhao Qihua,Antonuk Larry EORCID

Abstract

Abstract Photon counting detectors (PCDs) offer several advantages for medical x-ray imaging compared to conventional imagers. However, current PCDs, whose circuits are fabricated using crystalline silicon semiconductor material, are not well-suited for large-area imaging applications such as breast CT and kilovoltage cone-beam CT (kV CBCT) in radiotherapy. To address this challenge, prototype PCDs based on polycrystalline silicon (a semiconductor better suited for manufacture of large-area devices) were created and, in this paper, an empirical determination of the maximum count rate of individual pixel circuit components (amplifier, comparator, clock generator and counter) corresponding to those prototypes is reported. For each circuit component, test input pulses (which were generated so as to approximate those in a complete pixel circuit) were used to obtain output response waveforms from which count rate was determined. The maximum count rate (in units of counts per second, cps) for the amplifier was determined to be 20.8 kcps while that of the comparator, clock generator and counter components were determined to be 1.2 Mcps, 98 kcps and 4.9 Mcps, respectively. The comparator and counter components provide count rates beyond that required for breast CT (∼108 kcps at a pixel pitch of 330 μm) while those components as well as the clock generator exceed the rate required for kV CBCT in radiotherapy (∼72 kcps at a pitch of 400 μm). It is anticipated that new polycrystalline silicon circuit designs for the amplifier and clock generator could provide count rates sufficient for both applications.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3