Laser shock peening and its effects on microstructure and properties of additively manufactured metal alloys: a review

Author:

Munther Michael,Martin Tyler,Tajyar Ali,Hackel Lloyd,Beheshti Ali,Davami KeivanORCID

Abstract

Abstract This review paper discusses the recent progress in laser shock peening (LSP) of additively manufactured (AM) parts. LSP is an advanced post-processing technique that optimizes the service lives of critical components for various applications by inducing severe plastic deformation accompanied by the enhancement of surface properties in treated materials. Material improvement is enabled through the generation of high-density dislocations, grain refinement, and beneficial phase transformations. These mechanisms produce high magnitude compressive residual stresses which harden treated regions to depths exceeding 1 mm. However, a major roadblock for AM parts stems from the various fabrication processes themselves where detrimental tensile residual stresses are introduced during part manufacturing, along with near-surface voids and cracks, all of which severely limit their applications. In addition to post-fabrication heat treatment that is typically required to homogenize the microstructure and relieve the residual stresses of AM parts, post-processing surface treatments have also been developed to manipulate the residual stresses of AM materials. Tensile residual stresses generated during manufacturing affect the fatigue life of AM material negatively and could potentially surpass the material’s yield strength, resulting in acute geometric distortion. Recent studies have shown the potential of LSP to mitigate these stresses, modify the mechanical properties of the AM parts, and to close near-surface voids and cracks. Furthermore, the thermal stability of favorable microstructural modifications in laser peened AM parts, which allows for its use in high temperature environments, is not well understood and is currently limiting its effective utilization in these scenarios. The main goal of this review is to provide the detailed insight needed for widespread acceptance of this technique as a post-processing method for AM materials.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3