EA-DINO: Improved method for unmanned aerial vehicle detection in airspace based on DINO

Author:

Cai Hao,Zhang JinHongORCID,Xu JianLong

Abstract

Abstract In recent years, the increase in drone traffic and the potential for unauthorized surveillance has underscored the urgent need for technological advances in drone detection. Despite the rapid advancements in deep learning that have significantly improved object detection tasks, air-to-air unmanned aerial vehicle (UAV) detection continues to pose significant challenges. Challenges such as complex backgrounds, small size of UAVs in captured images, and variations in flight poses and angles pose significant difficulties for traditional deep learning approaches, mainly because of the inherent limitations of conventional convolutional neural network architectures in discriminating fine details against dynamically changing backdrops. To address these challenges, this study introduces EA-DINO, a new deep learning network based on enhanced aggregation (EA) and DINO. The network incorporates a series of improvements over DINO. First, the backbone is replaced with a Swin transformer, and agent attention is integrated. Second, an EA feature pyramid network is added to the network architecture. Experimental evaluations demonstrate that, in the context of air-to-air UAV detection complexities, the EA-DINO model achieves an mAP 50 of 96.6% on the Det-Fly dataset, representing an improvement of 8.3% over the baseline DINO model. This improvement is noteworthy compared with other mainstream models, illustrating the effectiveness of the proposed model in addressing the challenges of air-to-air UAV detection.

Funder

Special Projects in Key Fields of Guangdong Universities

Guangdong Province Special Fund for Science and Technology ("major special projects + task list") Project

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3