Real-time remaining useful life kernel density estimation considering dynamic transition of degradation states

Author:

Li ZhehaoORCID,Shi HuiORCID,Zhang Zhizhuang,Dong Zengshou,Li Lijun

Abstract

Abstract The accurate prediction of remaining useful life is a significant issue for ensuring the reliable operation of the system. Considering the dynamic transfer of degenerate state can improve the prediction accuracy and reduce the number of late prediction. Firstly, a time series density peak clustering algorithm suitable for real-time manifold data clustering is proposed. By choosing larger truncation distance at points with high sample density, the cluster centers can be found more accurately. Then, different degradation state patterns according to clustering results can be divided. Moreover, the smoothing parameters can be adaptively updated according to the sample density under different degradation modes and an adaptive kernel density remaining useful life estimation model is established. The test of the gearbox verifies the necessity and accuracy of the proposed model by comparison with the remaining useful life predictions of kernel density estimation without considering degraded state transitions.

Funder

Program of National Natural Science Foundation of China

Shanxi Scholarship Council of China

Fund Program

The Natural Science Foundation of Shanxi Province

Shanxi Excellent Graduate Innovation Program

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3