Design and analysis of cooling jacket developed for vacuum power tubes by multiphase cooling

Author:

Anand RohitORCID,Lakhera Vikas JORCID

Abstract

Abstract The vacuum tubes are used extensively in electronic industries. The MW level of vacuum tube are used in RF amplifiers and microwave sources in different sectors like defence, nuclear energy, satellites and medical diagnostics. The first step in the indigenous development of MW level of vacuum tube is the design of its cooling jacket. The cooling jacket of vacuum tubes use hypervapotron (HV) fins which are known for providing efficient cooling in compact space. The key objectives of this paper are to finalize the jacket’s construction material, evaluate the cooling jacket’s heat transfer performance at the MW level of RF (radiofrequency) power, and forecast safe operating conditions for given conditions of high heat flux and water flow rates. In this design, the vacuum tubes’ external dimensions are taken into consideration when designing the cooling jacket. ETP copper (Electrolytic Tough Pitch copper) and copper-chromium-zirconium (CuCrZr) are likely materials for the jacket’s construction. For the aforementioned design of the cooling jacket, FEA (Finite Element Analysis) simulations using a steady-state thermal module and computational fluid dynamics (CFD) simulations using an ANSYS CFX module are described for flow rates of 15, 30, and 60 lpm (liters per minute) and the heat flux 1, 2, 4, and 6 MW m−2. The results of CFD and FEA simulations are found to be in close agreement. A small deviation in results is seen after the start of nucleate boiling. 30 and 60 lpm are desirable flow rates for high heat flux values greater than 2 MW m−2. CuCrZr is the ideal material for a cooling jacket’s construction as it has safe working temperature limit of 350 °C at high heat flux values. Also, 15 lpm flow rate should be avoided while using this cooling jacket at heat flux values greater than or equal to 6 MW m−2.

Publisher

IOP Publishing

Subject

General Engineering

Reference30 articles.

1. Status of the ITER ion cyclotron H&CD;Beaumont;EPJ Web of Conferences,2017

2. Status of research and development for the ITER ICRF power source system;Mukherjee;Fusion Eng. Des.,2015

3. Results of the research and development programme for the ITER ICRF power source system;Trivedi,2018

4. Characteristics of the local bubble parameters of a subcooled boiling flow in an annulus;Yun;Nucl. Eng. Des.,2010

5. A pressure iteration scheme for two-phase flow modeling;Lee,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3