Simulation of new thin film Zn(O,S)/CIGS solar cell with bandgap grading

Author:

Elhady FadyORCID,M Abdolkader TarekORCID,Fedawy MostafaORCID

Abstract

Abstract Copper-Indium-Gallium-diSelenide (CIGS) thin film solar cell is a promising candidate for energy harvesting because of its high absorption coefficient and low cost compared to silicon-based solar cells. Absorber layer bandgap grading is a suitable method to improve CIGS thin film solar cell performance. Bandgap grading leads to a decrease in the recombination rate at the rear surface, which increases the open circuit voltage. Furthermore, bandgap grading improves the short circuit current due to the enhancement of collection probability. This paper introduces various routes for improving the performance of thin film CIGS solar cells by using bandgap grading. As a first step, both the bandgap energy and the thickness of the CIGS absorber layer of a uniform bandgap profile are optimized to get the best performance. Simulation is performed using SCAPS software and optimization results show that CIGS absorber layer with a bandgap of 1.2 eV and a thickness of 0.7 μm achieves a 22.48% efficiency. Then, bandgap grading with a parabolic distribution of various profiles is investigated and compared. It is found that with a parabolic double bandgap grading profile, which is a combination of front and back grading, an efficiency of up to 24.16% is achieved. This improvement is obtained using a gallium composition ratio of 0.1 for the minimal bandgap at 0.1 μm and 0.13 μm from the back contact and front contact, respectively. This result represents a 7.47% improvement compared to the baseline structure of a CIGS solar cell.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3