Advantages of cryogenic machining technique over without-coolant and with-coolant machining on SS316

Author:

Karthik Rao M CORCID,Malghan Rashmi L,Shettigar Arun Kumar,Herbert Mervin A,Rao Shrikantha S

Abstract

Abstract The analysis concentrated towards the influence of speed of the spindle along with a cryogenic (LN2) cooling technique in treating SS316 using CNC (Computerized numerical control) milling machine. An comparative study path was set and anlyised among three states i.e. Dry (Without coolant), wet (With coolant) and cryogenic (With liquid LN2) machining using coated carbide inserts. The coolant used in case of wet machining was water-soluble, referred to as cutting fluid. The experimental range falls in 3 different levels of spindle speed (SS), such as low level (1000 rpm), medium level (2000 rpm), and high level (3000 rpm), respectively. Meanwhile, feed rate (FR) and depth of cut (DOC) were reserved steadily with 450 mm min−1, 1 mm separately. This vital focus is towards cryogenic (LN2) machining effects and its perception of machinability on SS316, such as tool wear –TW (μm), cutting force–CF (N), cutting temperature–CT (ºC) and surface roughness–Ra (μm). The experiments were conducted and documented with cryogenic (LN2) techniques to establish the fairness and practicability of the method to compare with without-coolant (dry) and with-coolant (wet) machining. The attained statistical results in comparison of LN2 method over without-coolant and with-coolant machining concerned to test cases for CF- Fx (N), CT (ºC), Ra (μm) and FW (μm) are 53.21%–34.20%, 65.88%–44.51%, 75.43%–44.27%, & 59.76%–23.10%, respectively.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3