Experimental study of thermal limits with one-side heated smooth channel for plasma facing component safety

Author:

Lim Ji HwanORCID,Park Minkyu

Abstract

Abstract In order to stably operate the equipment inside the tokamak, which is loaded with a heat flux of several MW m−2 under the one-side heating condition, it is necessary to thoroughly prepare for various thermal engineering limits that may occur under the high heat flux load condition. In this study, we have experimentally explored critical heat flux (CHF) and onset of flow instability (OFI), which are considered potential threats in a DEMO fusion power plant. Specifically, the effect of system parameters on CHF was investigated. The results indicate that with an increase in subcooling and mass flux, the CHF increased, as it induced a faster bubble condensation near the CHF. As the system pressure increased, the CHF also increased. This is because the bubble size reduction effect was dominant in the pressure range of 1–10 bar. Most of the existing CHF correlations could evaluate the CHF with reasonable accuracy of within 25%; especially, the Boscary CHF correlation yielded the highest accuracy with an average error of 12%. Similar to CHF, OFI, which is a measure of the sudden fluctuations in the system pressure caused by a large amount of vapor generated due to the high heat flux, tended to increase as the subcooling, mass flow rate, and system pressure increased. Most of the existing OFI correlations yielded large error rates (more than 135%) as these correlations were primarily developed for micro-channels. Therefore, in this study, a new OFI correlation was developed using a Python code, in combination with an artificial intelligence (AI) regression method. The developed correlation can be used in the cooling system design of tokamaks, which involve a high-heat load condition on one-side of the reactor.

Funder

Korea Research Foundation’s Education Human Resource Development Program

Publisher

IOP Publishing

Subject

General Engineering

Reference36 articles.

1. Design and assessment of a new divertor plasma facing component containing the hypervapotron cooling channel and monoblock-type armor;Oh;Fusion Eng. Des.,2021

2. Divertor tungsten tile melting and its effect on core plasma performance;Lipschultz;Nucl. Fusion,2012

3. Impact of thermal fatigue on W–W brazed joints for divertor components;De Prado;J. Mater. Process. Tech.,2018

4. Critical heat flux analysis and R&D for the design of the ITER divertor;Raffray;Fusion Eng. Des.,1999

5. Photographic study of surface-boiling heat transfer to water forced convection;Gunther;Trans. ASME,1951

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3