Long-term power degradation testing of piezoelectric vibration energy harvesters for low-frequency applications

Author:

Hirst Jacob,Wang Jie,Nabawy Mostafa R AORCID,Cioncolini AndreaORCID

Abstract

Abstract Piezoelectric energy harvesters represent a viable and well-proven solution to convert ambient vibrations into useful electric power within a number of modern life applications. Whilst a large amount of studies has focused on improving power output from these devices, relatively little research has been directed to investigate how these devices degrade over time and the effect this has on long-term power generation. This paper, therefore, aims to experimentally investigate how piezoelectric vibration energy harvesters degrade during long-term operation in realistic harvesting conditions. The harvesters tested are unimorph cantilevers based on three of the most commonly used piezoelectric options: polyvinylidene fluoride (PVDF), Macro Fiber Composite (MFC), and Quick Pack (QP). Testing was carried out under single-frequency excitation (10–40 Hz) of 1g amplitude for three million vibration cycles. Our results show that the natural frequency and the optimum load resistance of the harvesters may vary during prolonged operation. Importantly, a larger cumulative variation in natural frequency and optimum load resistance yields a larger variation in power output, thereby linking the variation in power to the variation of the mechanical and/or electrical properties of the harvesters. Comparing the average power values over the testing period we found that increasing the tip mass does not necessarily improve the average power output, suggesting that a larger tip mass may exacerbate the degradation of the mechanical and/or electrical properties of the harvester. This was particularly evident for the stiffest QP harvesters which showed the highest signs of power degradation; nevertheless, QP harvesters still managed to demonstrate the highest power density values. When cost consideration is taken into account in the assessment, PVDF harvesters managed to demonstrate the highest power density to cost ratio.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3