A comprehensive machine learning framework with particle swarm optimization for improved polycystic ovary syndrome (PCOS) diagnosis

Author:

Kumar AnkurORCID,Singh Jaspreet,Khan Asim Ali

Abstract

Abstract Polycystic Ovary Syndrome (PCOS) is a hormonal disorder primarily affecting women of reproductive age, characterized by irregular menstrual cycles, elevated male hormones, and ovarian cysts. Early detection and treatment are crucial to prevent long-term complications. This research utilizes clinical data from Kaggle to develop a non-invasive PCOS diagnostic system. The authors conducted comprehensive data preprocessing, feature engineering, and exploratory data analysis (EDA). The refined dataset was incorporated into various default machine learning (ML) algorithms, including LR, LDA, GNB, SVM, XGB, DT, AB, RF, and KNN, for PCOS classification with varying train test ratios 70:30 to 80:20. To further enhance the model’s performance, the authors hybridized all the ML models with Particle Swarm Optimization (PSO). Remarkably, the proposed LR+PSO model achieved the highest accuracy at 96.30%, demonstrating exceptional proficiency with an 80:20 train-test ratio. It significantly improved sensitivity to 94.44%, indicating enhanced detection of positive cases, all while maintaining the highest specificity at 97.22% and precision at 94.44% compared to other models. These results highlight a substantial improvement in integrated models, emphasizing the potential of this novel approach to enhance PCOS diagnosis in terms of accuracy and efficiency, ultimately benefiting individuals with PCOS in their treatment journey.

Publisher

IOP Publishing

Reference30 articles.

1. Open access REVIEW ‘Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan;Teede;BMC Medicine,2010

2. Polycystic ovarian syndrome (PCOS) classification and feature selection by machine learning techniques;Nandipati;Applied Mathematics and Computational Intelligence (AMCI),2020

3. Detecting PCOS using machine learning;Tanwani;Int J Modern Trends Eng Sci (IJMTES),2020

4. Detection of Polycystic Ovary Syndrome (PCOS) Using Machine Learning Algorithms;Hdaib,2022

5. Polycystic ovary syndrome: insights into the therapeutic approach with inositols;Sortino;Frontiers in Pharmacology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3