A hybrid optimization for distributed generation and D-STATCOM placement in radial distribution network: a multi-faceted evaluation

Author:

S AnbuchandranORCID,M Arumuga BabuORCID,D Silas StephenORCID,M Thinakaran

Abstract

Abstract The deregulation of the power system, upward growth in electrical energy demand and network expansion have resulted in an increasing integration of distributed generation (DG) and distribution static synchronous compensator (D-STATCOM) into radial distribution systems (RDS). Nonetheless, the optimal allocation of these devices is highly important to derive immense benefits. This investigation narrows down on optimizing DG and D-STATCOM placement in IEEE 33-bus RDS with a view to increase bus voltages, decrease power losses as well as maximize economic gains. The study undertakes a comprehensive analysis comparing the technical, economic and environmental performance of DG and D-STATCOM; thereby enabling power engineers to make informed choices concerning which device will be most advantageous when it comes to delivering power in RDS. A fuzzy enhanced firefly optimization (FEFO) approach is proposed for the optimization and a multifaceted evaluation in terms of technical, financial and environmental is presented for effective decision-making on distributed energy resource deployment. D-STATCOM and wind DG integrations led to notable reductions in power loss and pollutant emissions, highlighting their effectiveness in improving power quality and reducing reliance on fossil fuels. While wind DG incurred a higher installation cost ($3,100,749.2) compared to D-STATCOM ($90,566.6), it achieved greater yearly power loss cost savings ($69,198 versus $47,619). FEFO’s efficiency in optimization stands out, aiding engineers in making informed decisions for optimizing D-STATCOM and wind-DG integration in the IEEE-33 RDS, ultimately enhancing system performance and cost-effectiveness through proactive planning. The integration of D-STATCOM and wind DG led to a significant improvement in distribution system efficiency, with D-STATCOM reducing real power loss by 28.7% and reactive power loss by 27.8%, while wind DG achieved greater reductions of 41.8% in real power loss and 37.5% in reactive power loss, alongside reductions in pollutant emissions of 1.5% and 2.2%, respectively.

Publisher

IOP Publishing

Reference31 articles.

1. Optimal placement, sizing and coordination of FACTS devices in transmission network using whale optimization algorithm;Nadeem;Energies,2020

2. Optimal share of DG and DSTATCOM in distribution network using firefly algorithm;Bhadoriya,2020

3. Optimal placement of D-STATCOM using sensitivity approaches in mesh distribution system with time variant load models under load growth;Gupta;Ain Shams Engineering Journal,2018

4. Optimal placement of D-STATCOM in distribution network using new sensitivity index with probabilistic load models;Gupta,2015

5. Optimization of planning cost of radial distribution networks at different loads with the optimal placement of distribution STATCOM using differential evolution algorithm;Sanam;Soft Computing,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3