Failure evaluation on tailor made aerospace aluminum alloys via underwater friction stir welding employing predictive machine learning technologies

Author:

S Arun PrakashORCID,K Gokul KumarORCID

Abstract

Abstract Employing tailor-made alloys with uneven thickness achieves light weighting, a critical issue for reducing emissions, leading to lower aircraft pollutants and fuel costs. The research utilizes advanced machine learning techniques such as Gaussian process regression (GPR), artificial neural networks (ANN) linear regression (LR), and support vector machines (SVM) to predict the ultimate tensile strength of underwater friction stir welding of AA6082-T6 and A2219-T83 tailor-made joints. The models have been evaluated with an assortment of kernel functions, including the polynomial kernel (PK), the radial basis function (RBF), and the Pearson VII universal kernel (PUK). To acquire experimental data, we used a Central Composite Design (CCD) technique, incorporating various factors in the process encompassing tool tilt angle (TA), rotating speed (RS), and welding speed (WS). The SVM radial basis function model (SRBP) had a maximum correlation coefficient of 0.9995 and a minimum root mean square error value (RMSE) of 0.5433 in the training set and 0.6271 in the test set. The ANN model predicted the UTS with an error margin of 0.21%, while the SRBP model showed a 0.52% error, and the LR model exhibited a significantly higher error of 7.73%. A peak tensile strength of 252.98 MPa was recorded in the S20 specimen, accounting for 85.61% of the base metal’s (AA6082 T6) strength. A reduced acute tearing ridge indicates petite, shallow dimples due to the inherent cooling. Through the analysis of metrics and residuals, high accuracy rates were observed when employing the ANN and SRBP models to predict mechanical traits.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3