On fault feature extraction and diagnosis of vertical mill

Author:

Xu BoORCID,Sun Yongjian

Abstract

Abstract In order to solve the problems of complicated fault diagnosis and poor fault diagnosis of vertical mill operation, this paper proposes a diagnostic method based on fisher and information entropy difference classification. By extracting the fault feature of the anomaly attribute–the maximum value of the attribute, and the possible faults can be determined according to the fault characteristics. Then the information entropy of each sample is calculated, and the entropy difference between normal and fault states is calculated. The normal and fault conditions can be classified by fisher classifier. This method can capture the instantaneous change of the fault and detect the moment when the fault occurs. And the effectiveness of the feature extraction method is verified by experiments.

Publisher

IOP Publishing

Subject

General Engineering

Reference18 articles.

1. Vertical mill simulation applied to iron ores;Mazzinghy;Journal of Materials Research and Technology,2015

2. Predicting the product particle size distribution from a laboratory vertical stirred mill;Rocha;Miner. Eng.,2018

3. Information entropy as a basic building block of complexity theory;Gao;Entropy,2013

4. Entropy, information theory, information geometry and bayesian inference in data, signal and image processing and inverse problems;D;Entropy,2015

5. Martensitic transformation acoustic emission signal processing based on the information entropy;Jiang;Mater. Eval.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3