Abstract
Abstract
Cladding is widely used in manufacturing industries for the production of pressure vessel by depositing thick layer of filler material for providing corrosion resistant-surface. The use of metal cored wire in gas metal arc welding (GMAW) process is popular due to its higher deposition rate and productivity. This work investigates the effect of process parameters on the deposition of cladding layer with ER 309L metal core wire (as filler material) on a corrosion resistant material (IS 2062). The welding parameters viz., wire feed rate (WFR), voltage (V), welding speed (S) and nozzle to plate distance (NTD) are employed as process parameters while penetration (P), bead width (W), reinforcement (R), weld penetration shape factor (WPSF) and weld reinforcement form factor (WRFF) as welding responses. The predictive model developed for P, W, R, WPSF, and WRFF using the response surface methodology (RSM) approach is found adequate at 95% confidence interval. The validation results for the developed model results in a model accuracy (MA) of 92.82%, 96.34%, 91.47% 88.98% and 87.75% for model P, W, R, WPSF, and WRFF respectively and it shows higher predictability and accuracy. The process parameters are optimized simultaneously with integrated optimization approach using RSM with Jaya algorithm and obtain optimal solution in less than 20 number of iterations. The minimum fitness value obtained as 1.3008 at an optimal parameter setting of WFR = 12 m min−1, V = 26 V, S = 280 mm min−1, NTD = 10 mm. The validation result at the optimal parameter setting results in an improvement of 6.45%, 11.29%, 13.58%, 16.07%, 15.38% is noted for P, W, R, WPSF, and WRFF respectively.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献