Algorithm for automatic optimizing cross-cut saw based on computer vision techniques

Author:

Ma HailongORCID,Shao Mingwei

Abstract

Abstract The optimization of timber classification by grades and defect detection plays an important role in the production of timbers. Traditionally, a timber is manually cut by a worker according to his experience. Defect detection and classification of a timber are with great subjectivity. Meanwhile, the action is not safe enough. In this case, an automatic optimizing cross-cut saw to finish these tasks of timber classification by grades and defect detection is built significantly. Related algorithms and detailed procedures for optimizing cross-cut saws are proposed in this paper. Additionally, a vision system is used to capture images of a timber. Captured images are analyzed and processed. First, defects in these images are detected. Then the serviceable part (defect-free) of a timber can be determined. Based on the pretrained network, the timber can be classified. As the homography matrix has been known, the physical position can be confirmed. In our proposed system, the cutting list is transmitted from the industrial control computer to a motion control system, then the timber can be cut according to the cutting list automatically. In this paper, related algorithms and detailed procedures are given. Moreover, a new optimizing cross-cut saw is built. Experiments show that the processing time for each image is about 0.026s and the minimum mean average precision is 94.15%. In this case, it can make the optimizing cross-cut saw efficient, labor-saving and safe. Furthermore, related algorithms are suitable to improve a traditional automatic optimizing cross-cut saw.

Funder

Open Fund Project of Education Department of Guangxi Zhuang Autonomous Region

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Driven EoL Aircraft Treatment: A Research Perspective;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3