Estimation of UAV flight time and Battery Consumption for photogrammetric application using multiple machine learning algorithms

Author:

Bilgehan Makineci HasanORCID,Mustafa HüsrevoğluORCID,Hakan KarabörkORCID

Abstract

ABSTRACT In recent years, important research has been conducted in Machine Learning (ML), especially on Artificial Neural Networks (ANN). Adaptive-Network Based Fuzzy Inference Systems (ANFIS) and Particle Swarm Optimization-Fuzzy Inference System (PSO-FIS) algorithms are popular ML algorithms like ANN. In terms of their working architecture and results, ANN, ANFIS, and PSO-FIS algorithms can obtain useful solutions for different nonlinear problems. This study evaluated the performance of the ANN, ANFIS, and PSO-FIS algorithms and compared the estimation results. Regarding the application, the test and target data was obtained from the flights performed with Unmanned Aerial Vehicles (UAV), including how long the UAV operates (i.e., Flight Time, FT) and how much battery the UAV consumes during the flight (i.e., Battery Consumption, BC). To obtain FT and BC outputs, sixty-five pre- and post-flight data tables were created. The best iterations for estimating the outputs using the three ML algorithms (considering the minimum/maximum values, RMSE, R, and R2) were determined and discussed based on the training, validation, and test estimations.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3