Design of two-loop FOPID-FOPI controller for inverted cart-pendulum system

Author:

Mondal ArindamORCID,Chakraborty Susmit

Abstract

Abstract The inverted cart-pendulum system (ICPS) consists in having a pendulum mounted on a sliding cart, with the pivot point fixed. This real time experiment indeed looks like a rocket and its functionality is akin to a rocket. These are the launchers and the missile guidance and control as well as construction anti-seismic measures also. The control aim in these systems is to maintain the inverted pendulum vertically stable. The system is causal but unstable and, therefore, has no minimum phase. Therefore, the right half plane pole and zero are close to each other. Therefore, the stability of the system can be considered as problematic at some points. Unfortunately, linear time- invariant (LTI) classical controllers are incapable of offering suffient loop robustness for such systems. This paper aims to project a two-loop fractional order controller (2-LFOC) design to stabilize a higher-order nonlinear inverted cart-pendulum system (ICPS). The modeling, linearization, and control of ICPS are demonstrated in this work. The control target is adjusted so that the inverted pendulum stabilizes in its upright state when the cart reaches the required point. To fulfill the control objective, two-loop FOPID-FOPI controllers are proposed, and the Levenberg Marquardt algorithm (LMA) is utilized to tune the controllers. A novel nonlinear integral of time-associated absolute-error (ITAE) based fitness formula considering the settling time and rise time is used to fit the controller parameters for 2-LFOC. A performance comparison with the PID controller in terms of different time domain parameters such as rise_time (T R ), peak_time (T P ), settling_time (T S ), maximum overshoot (OS M ), maximum undershoot (US M ) and steady-state error (E SS ) are investigated. Stability analysis using Riemann surface observation of the system compensated with the proposed controller is presented in this work. The robust behavior of the two-loop FOPID-FOPI controller is verified by the application of disturbances in the system and the Reimann surface observation.

Publisher

IOP Publishing

Reference32 articles.

1. Comparative study of parametric disturbances effect on cart-inverted pendulum system stabilization;Verma,2023

2. The inverted pendulum benchmark in nonlinear control theory: a survey;Boubaker;Int. J. Adv. Rob. Syst.,2013

3. analytical formula for optimal tuning of the state feedback controller gains for the cart-inverted pendulum system;Chatterjee;IFAC-PapersOnLine,2018

4. Critically damped stabilization of inverted-pendulum systems using continuous-time cascade linear model predictive control;Messikh;J. Franklin Inst.,2017

5. Comprehensive survey of pid controller design for the inverted pendulum;Kuczmann;Acta Technica Jaurinensis,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3