Fracture parameters of woven jute fibre reinforced axial flow fan blade material: an experimental investigation and FEA analysis

Author:

Chinta Venkata SushmaORCID,Amireddy Kiran Kumar,Reddy P Ravinder,Prasad Koorapati Eshwar

Abstract

Abstract Airflow required for the heat and mass transfer in industrial applications is often provided by axial flow fans. Glass fibre reinforced polymers (GFRP) are most often used to make these fan blades. The usage of glass fibres in composite materials is growing. By 2025, the global market for glass fibres will be worth 16.5 billion pounds. However, non-biodegradable composite reinforcement has major ecological and human health concerns, especially when reaching the end of its operational lifespan. Until now, industries have shown a strong inclination to use GFRP without adequately contemplating the potential consequences associated with their disposal. The economic viability of glass fibre recycling is questionable. However, natural fibres like jute and fibres extracted from vegetable plants are of much popular among academics and researchers due to their sustainability and ease of use. So, they’re suitable for making polymer composites. The amount of natural fibres that may be added to GFRP composites without materially altering their mechanical characteristics is a crucial factor in improving their decreased embodied emissions and biodegradability after service life. In this work the material C 1 represents an 18-ft axial flow fan blade material made of GFRP. This study used the term C 1 denotes the specific material utilised in the fabrication of 18-feet axial flow fan blades for industrial purposes. By substituting one layer of C 1 with woven jute and changing its position in it, the materials C 2 through C 6 are produced. All the materials are tested for fracture parameters like plane strain fracture toughness ( K 1 C ) and Critical strain energy release rate ( G 1 C ) as per ASTM D-5045. The results were validated by using finite element models implemented in a commercially available software ANSYS R19.2. The optimal layup sequence for fan blade material with single-layer woven jute reinforcement was found, which preserves fracture properties, also improves biodegradability after service life.

Publisher

IOP Publishing

Subject

General Engineering

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3