Micro-heater embedded ISFET pH sensor with high-k gate dielectrics for enhanced sensitivity

Author:

Hossain SalvirORCID,Rahman Md TawaburORCID

Abstract

Abstract The measurement of pH is an important routine practice in many chemical and biomedical applications. This work reports the design of a pH sensor based on the Ion Sensitive Field Effect Transistor (ISFET). The COMSOL Multiphysics® platform has been used to model and simulate the pH sensor in three dimensions (3D) while combining heat transport, electrostatic, and semiconductor modules. The binding of ions in gate dielectrics results in induced charge carriers in the conducting channel of 3D ISFET, which is controlled by the applied gate voltage for determining ion concentration. Here, the pH of water as the bulk electrolyte is measured by attaining the required gate voltage to achieve a certain drain current in 3D ISFET. The pH sensitivity of 3D ISFET with different high-k gate dielectrics such as Ta2O5, Al2O3, HfO2, ZrO2, and SiO2 is measured and compared. The 3D ISFET with Ta2O5 exhibited excellent sensitivity of 59.0 mV pH−1 with a wide linear detection range of pH from 1 to 13 at room temperature compared to other high-k gate dielectrics. Furthermore, the sensitivity was further enhanced to 66.0 mV pH−1 at 60 °C due to the incorporation of a micro-heater into the ISFET. The excellent sensitivity and wide linear detection range can be attributed to the high concentration of surface sites in the Ta2O5 sensing film and improved disassociation constants in the presence of the gate dielectric in contact with the electrolyte. Finally, this sensor demonstrates its potential for real applications.

Funder

UGC Funded Research Project

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3