Fully printed and flexible multi-material electrochemical aptasensor platform enabled by selective graphene biofunctionalization

Author:

Wallace Shay Goff,Brothers Michael C,Brooks Zachary E,Rangnekar Sonal V,Lam David,Lawrence Michael J St,Rojas William A Gaviria,Putz Karl W,Kim Steve S,Hersam Mark CORCID

Abstract

Abstract The demand for flexible biochemical sensors has increased with advances in computational functionality and wireless communication. Advances in materials science and biochemistry have enabled the development and fabrication of biosensors for selective detection of biological analytes leveraging ink-printed technologies, including in flexible form-factors. However, despite these advances, minimal effort has been devoted to translating the multi-material, three-electrode electrochemical cell, which is widely regarded as the standard for laboratory-scale studies, into a flexible form-factor for use in immunosensors, especially in a manner that is compatible with rapid and scalable additive manufacturing. Here, we report a fully printed and flexible electrochemical non-enzymatic immunosensor platform that integrates four chemically compatible inks and a non-covalent, two-step biofunctionalization scheme. The robustness of the platform is demonstrated using a model aptasensor that enables lysozyme detection using both electrochemical impedance spectroscopy and square wave voltammetry. The flexible, fully ink-printed aptasensor shows competitive performance to commercially available rod/disc electrodes in a bath cell. Overall, this work establishes a methodology for high-throughput fabrication of robust, flexible, multi-material, three-electrode immunosensors that can be generalized to a range of biosensor applications.

Funder

Air Force Research Laboratory

National Institute of Standards and Technology

NSF

Publisher

IOP Publishing

Subject

General Engineering

Reference75 articles.

1. A review of rapid methods for the analysis of mycotoxins;Zheng;Mycopathologia,2006

2. Point-of-care diagnostics: recent developments in a connected age;Nayak;Anal. Chem.,2017

3. Continuous glucose monitoring: a review of available systems;Funtanilla;P and T,2019

4. Achievements and challenges for real-time sensing of analytes in sweat within wearable platforms;Brothers;Acc. Chem. Res.,2019

5. Ion-selective electrodes with ionophore-doped sensing membranes;Bühlmann,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3