Fracture toughness of nano-zirconia filled aluminum matrix composites: an experimental and numerical analysis

Author:

Shekhawat Deepika,Agarwal Pankaj,Patnaik Tapan Kumar,Singh Amit,Patnaik AmarORCID

Abstract

Abstract During the service life of components, they encounter several cyclic loadings that consequently generate stress which encourages crack interaction ultimately deteriorating materials’ performance. The present study aims to investigate the fracture behaviour of aluminium 6061 reinforced with 0–15 wt% ZrO2 particles (at step of 5 wt%) fabricated using stir casting technique. Compositional analysis through x-ray diffraction was performed on the prepared composite samples. The fracture toughness of prepared composites is investigated through bending test by using single edge notch bend (SENB) specimens. In addition, the computation of fracture toughness was also performed by finite element analysis (FEA) approach, and the numerical results obtained from the FEA were compared with the experimental value. Furthermore, fractography and microstructural tests were carried out in order to investigate the influence of reinforcement weight percentage on the failure behaviour of the composites that had been prepared. The results show that with inclusion of ZrO2 (15 wt%) in aluminum 6061 matrix the maximum fracture toughness of 500.83 MPa.mm0.5 was observed. The study performed through FEA highlights the stress phenomena and result are in good agreement with the experimental results.

Publisher

IOP Publishing

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3