Maximizing enhanced oil recovery via oxidative cracking of crude oil: employing air injection and H2O2 with response surface methodology optimization

Author:

Nouari Omar,Hammadou née Mesdour SouadORCID,Hamada Boudjemaa

Abstract

Abstract The utilization of air injection as a method to enhance oil recovery in oil fields has gained prominence due to its cost-effectiveness and widespread availability, particularly in heavy oil production. This study focuses on optimizing the oxidative cracking process of Algerian crude oil by employing air injection supplemented with H2O2 and analyzing the interaction of key operating parameters like temperature and catalyst amount using response surface methodology. The predicted values derived from the response functions closely aligned with experimental data, demonstrating high accuracy (R2 = 0.9727 for liquid oil, R2 = 0.9176 for residue, and R2 = 0.7399 for gas phases). Using the developed second-order model, optimal conditions were determined through contour and surface plots, as well as regression equation analysis using Design software. At these optimal parameters (14.78 wt% of H2O2, 2 l min−1 of air flow, 100 ml of crude oil at 354.05 °C for 40 min), the oxidative cracking process yielded 96.32% liquid oil, 3.018% residue, and 0.662% gas products. Notably, the experimental produced liquid oil constituted 96.07 vol. %, matching well with the optimization outcomes. Physicochemical analysis of liquid product phase obtained from oxidative cracking process of petroleum confirmed the prevalence of light aliphatic compounds (C2-C11) at 70.59%, alongside 29.41% of C12-C36. The process also resulted in reduced viscosity, density, refractive index, and sulfur content in the liquid phase. The combination of air injection and H2O2 showcases promise in recovering residual oil effectively and contributes to the ongoing advancements in EOR techniques.

Publisher

IOP Publishing

Reference62 articles.

1. Breakthrough and significance of unconventional oil and gas to classical petroleum geology theory;JIA;Petr. Expl. Develop.,2017

2. In situ combustion in enhanced oil recovery (EOR): a review;Mahinpey;Chem. Eng. Commun.,2007

3. An overview of chemical enhanced oil recovery: recent advances and prospects;Gbadamosi;Inter Nano Letters,2019

4. Thermal heavy oil recovery projects succeed in Egypt and Syria;Abu El Ela;Oil Gas J.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3