Characterization of edge damage induced on REBCO superconducting tape by mechanical slitting

Author:

Hartnett William N,Ramirez Javier,Olson Tanner E R,Hopp Christopher T,Jewell Matthew CORCID,Knoll Allan R,Hazelton Drew W,Zhang YifeiORCID

Abstract

Abstract Rare-earth barium-copper-oxide (REBCO) superconductors are high-field superconductors fabricated in a tape geometry that can be utilized in magnet applications well in excess of 20 T. Due to the multilayer architecture of the tape, delamination is one cause of mechanical failure in REBCO tapes. During a mechanical slitting step in the manufacturing process, edge cracks can be introduced into the tape. These cracks are thought to be potential initiation sites for crack propagation in the tapes when subjected to stresses in the fabrication and operation of magnet systems. We sought to understand which layers were the mechanically weakest by locating the crack initiation layer and identifying the geometrical conditions of the slitter that promoted or suppressed crack formation. The described cracking was investigated by selectively etching and characterizing each layer with scanning electron microscopy, laser confocal microscopy, and digital image analysis. Our analysis showed that the average crack lengths in the REBCO, LaMnO3 (LMO) and Al2O3 layers were 34 μm, 28 μm, and 15 μm, respectively. The total number of cracks measured in 30 mm of wire length was between 3000 and 5700 depending on the layer and their crack densities were 102 cracks mm−1 for REBCO, 108 cracks mm−1 for LMO, and 183 cracks mm−1 for Al2O3. These results indicated that there are separate crack initiation mechanisms for the REBCO and the LMO layers, as detailed in the paper. With a better understanding of the crack growth behavior exhibited by REBCO tapes, the fabrication process can be improved to provide a more mechanically stable and cost-effective superconductor.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3