Nanoscale imaging of quantum dot dimers using time-resolved super-resolution microscopy combined with scanning electron microscopy

Author:

Dunlap Megan KORCID,Ryan Duncan PORCID,Goodwin Peter MORCID,Sheehan Chris J,Werner James HORCID,Majumder SomakORCID,Hollingsworth Jennifer AORCID,Gelfand Martin PORCID,Van Orden AlanORCID

Abstract

Abstract Time-resolved super-resolution microscopy was used in conjunction with scanning electron microscopy to image individual colloidal CdSe/CdS semiconductor quantum dots (QD) and QD dimers. The photoluminescence (PL) lifetimes, intensities, and structural parameters were acquired with nanometer scale spatial resolution and sub-nanosecond time resolution. The combination of these two techniques was more powerful than either alone, enabling us to resolve the PL properties of individual QDs within QD dimers as they blinked on and off, measure interparticle distances, and identify QDs that may be participating in energy transfer. The localization precision of our optical imaging technique was ∼3 nm, low enough that the emission from individual QDs within the dimers could be spatially resolved. While the majority of QDs within dimers acted as independent emitters, at least one pair of QDs in our study exhibited lifetime and intensity behaviors consistent with resonance energy transfer from a shorter lifetime and lower intensity donor QD to a longer lifetime and higher intensity acceptor QD. For this case, we demonstrate how the combined super-resolution optical imaging and scanning electron microscopy data can be used to characterize the energy transfer rate.

Funder

Los Alamos Institute for Materials Science

American Chemical Society Petroleum Research Fund

Laboratory Directed Research and Development

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3