Ti3C2T x MXene as surface-enhanced Raman scattering substrate

Author:

Minassian Hayk,Melikyan Armen,Goncalves Manuel RodriguesORCID,Petrosyan Petros

Abstract

Abstract The electromagnetic field enhancement mechanisms leading to surface-enhanced Raman scattering (SERS) of R6G molecules near Ti3C2T x MXene flakes of different shapes and sizes are analyzed theoretically in this paper. In COMSOL simulations for the enhancement factor (EF) of SERS, the dye molecule is modeled as a small sphere with polarizability spectrum based on experimental data. It is demonstrated, for the first time, that in the wavelength range of 500 nm 1000 nm , the enhancement of Raman signals is largely conditioned by quadrupole surface plasmon (QSP) oscillations that induce a strong polarization of the MXene substrate. We show that the vis-NIR spectral range quadrupole SP resonances are strengthened due to interband transitions (IBTs), which provide EF values of the order of 105–107 in agreement with experimental data. The weak sensitivity of the EF to the shape and size of MXene nanoparticles (NPs) is interpreted as a consequence of the low dependence of the absorption cross-section of QSP oscillations and IBT on the geometry of the flakes. This reveals a new feature: the independence of EF on the geometry of MXene substrates, which allows to avoid the monitoring of the shape and size of flakes during their synthesis. Thus, MXene flakes can be advantageous for the easy manufacturing of universal substrates for SERS applications. The electromagnetic SERS enhancement is determined by the ‘lightning rod’ and ‘hot-spot’ effects due to the partial overlapping of the absorption spectrum of the R6G molecule with these MXene resonances.

Funder

Science Committee of the Republic of Armenia

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3