Abstract
Abstract
Thin film microbattery is urgently needed to provide a long-term stable on-chip power for various kinds of microdevices or microsystems. Anode is a core component in thin film lithium ion microbattery, however, previous researches mostly focused on metal oxide or Si-based thin film anodes, and the reports of metal sulfide thin film anodes are limited. Herein, we present a new type of Ti-doped ZnS thin film fabricated by radio frequency (RF) magnetron co-sputtering. The Ti doping is designed to enhance the overall electrical conductivity of the ZnS thin film, since the insulation of ZnS is one of the major barriers to deliver its lithium storage performance. As an anode applied in lithium ion battery, the Ti-doped ZnS thin film exhibits good cycling stability up to 500 cycles at a current density of 1.0 A·g−1, and remains a higher specific capacity of 463.1 mAh·g−1 than that of the pure ZnS thin film, showing its better electrochemical reaction reversibility. The rate capability and EIS measurements manifest the more favorable electrochemical reaction kinetics of the Ti-doped ZnS thin film, moreover, the CV tests at various scan rates indicate the improved Li+ diffusion kinetics in the electrode after Ti doping.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献