Abstract
Abstract
Co-axially electrospun, magnetic Fe3O4@carbon (Fe3O4@C) nanofibers comprising Fe3O4 particles in the core and carbon in the shell have been fabricated and their performances as magnetic material have been studied. The electrospun Fe3O4@C nanofibers have been characterized with x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscope, x-ray photoelectron spectroscope (XPS), and superconducting quantum interference device magnetometer. The structural and microstructural analysis has given a brief idea about the pure Fe3O4 and C phase formation and also the existence of smooth and continuous morphology of Fe3O4@C nanofibers. It has been shown that there exist two different oxidation states of Fe in the XPS spectrum. The magnetization hysteresis loop has been observed at low temperatures (5 K, 100 K) as well as at room temperature (300 K) which gives different magnetic parameters. Temperature dependent magnetic measurements (from 5 to 300 K) suggest the existence of Verwey transition for lower percentage of iron oxide content.
Funder
Biju Pattnaik Research Fellowship (BPRF), DST Odisha
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献