Rare earth doped metal oxide nanoparticles for photocatalysis: a perspective

Author:

Mehtab Amir,Ahmed Jahangeer,Alshehri Saad M,Mao Yuanbing,Ahmad TokeerORCID

Abstract

Abstract Metal oxides are well-known materials that have been considered as the prominent photocatalysts. Photocatalysis is a promising way to address the environmental issues which are caused by fossil fuel the combustion and industrial pollutants. Lot of efforts such as doping of metal oxides with metals, non-metals have been made to enhance their photocatalytic activity. More specifically, in this review we have discussed detailed synthesis procedures of rare earth doped metal oxides performed in the past decades. The advantage of doping metal oxides with rare earth metals is that they readily combine with functional groups due to the 4f vacant orbitals. Moreover, doping rare earth metals causes absorbance shift to the visible region of the electromagnetic spectrum which results to show prominent photocatalysis in this region. The effect of rare earth doping on different parameters of metal oxides such as band gap and charge carrier recombination rate has been made in great details. In perspective section, we have given a brief description about how researchers can improve the photocatalytic efficiencies of different metal oxides in coming future. The strategies and outcomes outlined in this review are expected to stimulate the search for a whole new set of rare earth doped metal oxides for efficient photocatalytic applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference179 articles.

1. Structure and environmental impact of global energy consumption;Bilgen;Renew. Sustain. Energy Rev.,2014

2. From fossil to green;Okkerse;Green Chem.,1999

3. Concerns about climate change and the role of fossil fuel use;Wuebbles;Fuel Process. Technol.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3