Effects of anodization conditions of stainless steel on the formation of ordered nanoporous structures with high aspect ratios

Author:

Osada Yuga,Yanagishita TakashiORCID

Abstract

Abstract The nanoporous structures obtained by the anodization of stainless steel are functional materials with various potential applications. It has been reported that nanoporous structures can be prepared by the anodization of stainless steel in an electrolyte containing fluoride ions. However, under the reported anodization conditions, the control range of the interpore distance of resulting nanoporous structures was narrow. To expand the application fields of the nanoporous structures obtained by the anodization of stainless steel, it is an important challenge to determine the anodization conditions that can control the interpore distance of nanoporous structures over a wide range. In this study, we investigated the effects of the electrolyte composition on the anodization behavior of stainless steel and the interpore distance of the resulting nanoporous structure. As a result, we found that the maximum voltage for the stable anodization of stainless steel increases when a mixture of ethylene glycol and glycerol containing NH4F is used as the electrolyte. Since the interpore distance of nanoporous structures obtained by the anodization of stainless steel is proportional to the anodization voltage, as the voltage range over which stainless steel can be anodized increased, the range of interpore distances of the nanoporous structures obtained also increased. On the basis of these results, ordered nanoporous structures with a large interpore distance (100 nm), which could not be obtained under the previously reported anodization conditions, were fabricated by the anodization of a stainless steel substrate with a depression pattern formed by Ar ion milling using an alumina mask under optimized anodization conditions. The resulting ordered nanoporous structures with controlled interpore distances are expected to be used in various devices such as capacitors and photocatalysts.

Funder

Light Metal Educational Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3