UV response characteristics of mixed-phase MgZnO thin films with different structure distributions, high Iuv/Idark ratios, and fast speed MgZnO UV detectors with tunneling breakdown mechanisms

Author:

Han Shun,Xia H,Lu Y MORCID,Liu W J,Xu W Y,Fang M,Cao P J,Zhu D L

Abstract

Abstract High-performance ultraviolet (UV) detectors with both high responses and fast speeds are hard to make on homogeneous crystal semiconductor materials. Here, the UV response characteristics of mixed-phase MgZnO thin films with different internal structure distributions are studied. The mixed-phase MgZnO-based detector with the given crystal composition has a high response at both deep UV light (96 A W−1 at 240 nm) and near UV light (80 A W−1 at 335 nm). Meanwhile, because of the quasi-tunneling breakdown mechanism within the device, the high-response UV detector also shows a fast response speed (tr = 0.11 μs) and recovery speed (td1 = 26 μs) at deep UV light, which is much faster than both low-response mixed-phase MgZnO-based UV detectors with other structure constitutions and reported high-response UV devices on homogenous crystal materials. The Idark of the device is just 4.27 pA under a 5 V bias voltage, so the signal-to-noise ratio of the device reached 23852 at 5.5 uW cm−2 235 nm UV light. The new quasi-tunneling breakdown mechanism is observed in some mixed-phase MgZnO thin films that contain both c-MgZnO and h-MgZnO parts, which introduce a high response, signal-to-noise ratio, and fast speed into mixed-phase MgZnO-based UV detectors at weak deep UV light.

Funder

Science and Technology Research Items of Shenzhen

Natural Science Foundation of Guangdong Province

Public Welfare Capacity Building in Guangdong Province

National Natural Science Foundation of China

Project of Department of Education of Guangdong Province

Science and Technology Foundation of Shenzhen and the National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3