Magnetorheological properties of Fe–Co nanoparticles with high saturation magnetization and low coercivity

Author:

Du Tianxiang,Zhao Penghui,Tong Yu,Ma Ning,Huang HaoORCID,Dong XufengORCID

Abstract

Abstract Fe–Co alloys exhibit an excellent saturation magnetization, which makes them become a potential candidate for the high property magnetic particles in magnetorheological fluids (MRFs). How to decrease their coercivity and residual magnetization without sacrificing the saturation magnetization is a crucial problem to be solved. In this study, Fe–Co nanoparticles were prepared by DC arc discharge and further disposed through low temperature annealing in Ar atmosphere. The successful synthesis of Fe–Co nanoparticles was proved by x-ray diffraction and EDS. The vibrating sample magnetometer results revealed that the prepared Fe–Co nanoparticles had a saturation magnetization of 208 emu g−1, while the coercivity and remanent magnetization were 58 Oe and 5.8 emu g−1, respectively. The MR properties of Fe–Co nanoparticles based MRFs (FeCoNP-MRFs) with 10% particles by volume fraction were systematically investigated. The FeCoNP-MRFs showed up to 4.61 kPa dynamic shear stress at 436 kA m−1 magnetic field and an excellent reversibility. The MR properties of FeCoNP-MRFs were fitted well by Bingham and power law model, and described by Seo-Seo and Casson fluid model. Meanwhile, the sedimentation ratio of FeCoNP-MRFs was still 87.3% after 72 h, indicating an excellent sedimentation stability.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3