Abstract
Abstract
Based on the method of non-equilibrium Green’s function, we investigate the thermal transport and thermoelectric properties of graphenylene nanoribbons (GRNRs) with different width and chirality. The results show that the thermoelectric (TE) performance of GRNRs significantly increases with decreasing ribbon width, which stems from the reduction of thermal conductance. In addition, by changing the ribbon width and chirality, the figure of merit (
Z
T
) can be controllably manipulated and maximized up to 0.45 at room temperature. Moreover, it is found that the
Z
T
value of GRNRs with branched structure can reach 1.8 at 300 K and 3.4 at 800 K owing to the phonon local resonance. Our findings here are of great importance for thermoelectric applications of GRNRs.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献