Pristine carbon nanotubes are efficient absorbers at radio frequencies

Author:

Rommelfanger Nicholas JORCID,Brinson Kenneth,Bailey John E,Bancroft Analiese M,Ou Zihao,Hong GuosongORCID

Abstract

Abstract Radio frequency ablation and microwave hyperthermia are powerful tools for destroying dysfunctional biological tissues. However, wireless application of these techniques is hindered by their inability to focus the electromagnetic energy to small targets. The use of locally injected radio frequency- or microwave-absorbing nanomaterials can help to overcome this challenge by confining heat production to the injected region. Previous theoretical work suggests that high-aspect-ratio conducting nanomaterials, such as carbon nanotubes, offer powerful radio frequency and microwave absorption. While carbon nanotubes have been demonstrated as radiothermal agents, common solubilization methods may reduce their absorption efficiency, yielding undesirable nonspecific heating in the biological tissue background. In this manuscript, we hypothesize that pristine carbon nanotubes can act as efficient absorbers at radio frequencies, thus providing differential heating over the tissue background. Specifically, we use a sonication-free preparation technique to preserve both the high aspect ratio and local concentration of pristine carbon nanotubes. We validate the differential heating of these samples by 4.5-fold at 2 GHz compared to the heating of saline at a physiological concentration using infrared thermography. In addition, we successfully achieved local heating of pristine carbon nanotubes within a three-dimensional biological tissue phantom. Numerical simulations further aid in producing a temperature map within the phantom and confirming localized heating. Due to their significant differential and local heating, we believe that pristine carbon nanotubes may facilitate region-specific radio frequency ablation and microwave hyperthermia while keeping nonspecific heating to a low level in the normal tissue background.

Funder

Pinetops Foundation

Spinal Muscular Atrophy Foundation

Beckman Technology Development Grant

Rita Allen Foundation

National Science Foundation

National Institute on Aging

Stanford Bio-X Initiative

Wu Tsai Neurosciences Institute

NSF EAGER

National Science Foundation Graduate Research Fellowship Program

Focused Ultrasound Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3