Transition metal dichalcogenides nanomaterials based piezocatalytic activity: recent progresses and outlook

Author:

Kole Arup Kanti,Karmakar Srikanta,Pramanik Ashim,Kumbhakar PathikORCID

Abstract

Abstract Piezoelectric materials have drawn significant attention from researchers in the recent past as the piezo-potential, induced by applied external stress, generates an electric field, which paves the way for the creation and transfer of electrons and holes. After the theoretical prediction of the existence of the piezoelectric effect in transition metal dichalcogenides (TMDCs) semiconductors, intense research efforts have been made by various researchers to demonstrate the effect experimentally. In addition 2D TMDCs exhibit layer-dependent tunable electronic structure, strongly bound excitons, enhanced catalytic activity at their edges, and novel spin/pseudospin degrees of freedom. The edge sites and activated basal planes of 2D TMDCs are shown to be highly active toward catalysis of the hydrogen evolution reaction (HER). However, as compared to electrocatalytic or even photocatalytic performances, TMDC materials exhibit poorer piezocatalytic activity, in general. Therefore, a numbers of research strategies have been made to intensify the piezoelectric effect by synthesizing different types of TMDC nanostructures, by coupling the piezoelectric effect with the photocatalytic effect, by doping with other materials, etc. This review discusses various techniques of synthesis of TMDCs nanostructures and the recent progresses in applications of TMDC nanomaterials in piezocatalysis. In the present article, the piezocatalytic dye degradation performances and HER activity using different TMDCs have been reviewed in detail. Different methods of increasing the piezocatalytic activity of various TMDCs nanostructures have been illustrated. Here, it has also been attempted to systematically summarize and provide an outlook of the charge transfer behaviour and catalytic mechanisms in large varieties of TMDC piezocatalysts and piezo-photocatalysts. In addition, advanced applications of TMDC piezocatalytic materials as piezoelectric nanogenerator, piezocatalytic dye degradation, piezo−phototronic dye degradation and HER studies have been highlighted.

Funder

Council of Scientific and Industrial Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference151 articles.

1. There’s plenty of room at the bottom;Feynman;Eng. Sci.,1960

2. An introduction to nanoparticles and nanotechnology;Benelmekki,2021

3. Physical properties of nanomaterials;Lue;Encyclopedia Nanosci. Nanotechnol.,2007

4. Nanocrystalline semiconductors: synthesis, properties, and perspectives;Trindade;Chem. Mater.,2001

5. A review on the progress of nanostructure materials for energy harnessing and environmental remediation;Rani;J. Nanostruct. Chem.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3