Abstract
Abstract
Creating sensitive and reproducible substrates for surface-enhanced Raman spectroscopy (SERS) has been a challenge in recent years. While SERS offers significant benefits over traditional Raman spectroscopy, certain hindrances have limited their commercial use, especially in settings where low limits of detection are necessary. We studied a variety of laser-deposited silver microstructured SERS substrates with different morphology as a means to optimize analyte detection. We found that using a 405 nm laser to deposit lines of silver nanoparticles (AgNPS) from a 2 mM silver nitrate and sodium citrate solution offered not only the best enhancement, but also the most consistent and reproducible substrates. We also found that the probability of deposition by laser was wavelength dependent and that longer wavelengths were less likely to deposit than shorter wavelengths. This work offers a better understanding of the laser deposition process as well as how substrate shape and structure effect SERS signals.
Funder
UCCS BioFrontiers Center, University of Colorado Colorado Springs
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献