Bright, small sizes and hydro-dispersive NIR persistent luminescence nanoparticles modified with Si and amino groups for enhanced bioimaging

Author:

Fu Jing,Lv Qi-YanORCID,Li Yan-Shuai,Song XiaojieORCID,Zhu Qi,Ren Xueling,Cui Hui-FangORCID

Abstract

Abstract Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) with high brightness, small sizes, good hydro-dispersivity, and intrinsic surface-functional groups are desirable in biological applications. In this work, Cr3+-doped zinc gallogermanates Zn1+x Ga2−2x Ge x O4:Cr (ZGGC) PLNPs were hydrothermally synthesized via 3-aminopropyltriethoxysilane (APTES) as an additive, or APTES and cetyltrimethylammonium bromide (CTAB) as two co-additives. Addition of APTES not only dramatically enhances the 696 nm NIR luminescence intensity, but also obviously decreases the particle size and introduces amino groups. In particular, the x = 0.1 series ZGGC (ZGGC0.1) with the addition of n moles equivalent APTES (ZGGC0.1-nA) had smaller particle sizes than the x = 0.2 counterpart (ZGGC0.2-nA). The NIR afterglow intensities increased with the APTES introduction. The ZGGC0.2-2.5A sample (also named as ZGGC, Si, -NH2) exhibited maximum luminescence intensities both in solid and aqueous states. With APTES, Si atom is doped and –NH2 groups are modified, the trap depth and density become larger, and the afterglow intensities and decay time are significantly enhanced. More notably, co-addition of CTAB (ZGGC0.2-2.5A-C) (also named as ZGGC, Si, −NH2’) further enhances hydro-dispersivity and luminescence intensity, decreases particle sizes, and results in more prominent amino groups. The trap density is drastically higher than that without CTAB (i.e. ZGGC0.2-2.5A). Change of Cr3+ microenvironment in the crystal and more defects introduction contribute to the enhanced brightness. As expected, the ZGGC,Si,-NH2’ PLNPs possess excellent biocompatibility, deep tissue penetration and distinguished bioimaging properties, and rechargeability with orange LED light. The ZGGC,Si,-NH2’ PLNPs should provide to be an excellent nanomaterial for various functionalization and bioimaging applications.

Funder

Henan Province Science and Technology Innovation Talent Program

Natural Science Foundation of Henan Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3