Abstract
Abstract
In this work, a novel nitrogen-phosphorus co-doped carbon quantum dots (N, P-CQDs) hydrogel was developed utilizing the as-synthesized N, P-CQDs and acrylamide (AM) with the existence of ammonium persulfate and N, N′-methylene bisacrylamide (N-MBA). In consistent with pure N, P-CQDs, the N, P-CQDs hydrogel also shows a dramatic fluorescence property with maximum emission wavelength of 440 nm, which can also be quenched after adsorbing iron ions (Fe3+). When the concentration of Fe3+ is 0–6 mmol l−1, a better linear relationship between Fe3+ concentration and the fluorescence intensities can be easily obtained. Additionally, the N, P-CQDs hydrogel exhibits better recyclability. This confirms that the N, P-CQDs hydrogel can be used for adsorbing and detecting Fe3+ in aqueous with on–off–on mode. The fluorescence quenching mainly involves three procedures including the adsorption of Fe3+ by hydrogel, integration of Fe3+ with N, P-CQDs and the transportation of conjugate electrons in N, P-CQDs to the vacant orbits of Fe3+ and the adsorption process follows a pseudo-second-order kinetic model confirmed in the Freundlich isotherm model. In conclusion, this work provides a novel route for synchronously removing and detecting the metal ions in aqueous by integrating N, P-CQDs with hydrogel with better recyclability.
Funder
National Natural Science Foundation of China
the Development of Local Universities, the Research Foundation of Education Bureau of Heilongjiang Province of China
Educational Science Research Project of Qiqihar University
Degree and Postgraduate Education Teaching Reform research Project of Qiqihar University
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献