Abstract
Abstract
Manipulating light at the sub-wavelength level is a crucial feature of surface plasmon resonance (SPR) properties for a wide range of nanostructures. Noble metals like Au and Ag are most commonly used as SPR materials. Significant attention is being devoted to identify and develop non-noble metal plasmonic materials whose optical properties can be reconfigured for plasmonic response by structural phase changes. Chromium (Cr) which supports plasmon resonance, is a transition metal with shiny finished, highly non-corrosive, and bio-compatible alloys, making it an alternative plasmonic material. We have synthesized Cr micro-rods from a bi-layer of Cr/Au thin films, which evolves from face centered cubic to hexagonal close packed (HCP) phase by thermal activation in a forming gas ambient. We employed optical absorption spectroscopy and cathodoluminescence (CL) imaging spectroscopy to observe the plasmonic modes from the Cr micro-rod. The origin of three emission bands that spread over the UV–Vis-IR energy range is established theoretically by considering the critical points of the second-order derivative of the macroscopic dielectric function obtained from density functional theory (DFT) matches with interband/intraband transition of electrons observed in density of states versus energy graph. The experimentally observed CL emission peaks closely match the s–d and d–d band transition obtained from DFT calculations. Our findings on plasmonic modes in Cr(HCP) phase can expand the range of plasmonic material beyond noble metal with tunable plasmonic emissions for plasmonic-based optical technology.
Funder
Department of Atomic Energy, Government of India
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献