Light absorption and hydrophobicity of a polystyrene/multiwall carbon nanotube composite with surface nanostructures

Author:

Yung Kai-LeungORCID,Xu YanORCID,Tian Wei,Ko Sui Man,Foster James AbbottORCID

Abstract

Abstract This paper describes an investigation into how combined carbon nanotube doping and surface nanostructuring affects the surface properties of polystyrene. Multiwall carbon nanotubes (MWCNTs) have unique anisotropic electrical properties that can be utilized for light absorption, electromagnetic shielding and nanoscale electostatic forces. Polystyrene was doped with 5 wt% MWCNTs and the resulting composite was wetted onto a porous anodic alumina template to form a nanostructure surface of nanotubes. Scanning electron microscopy revealed a hierarchical surface structure with the composite nanotubes bundled together as the MWCNTs increased the attractive forces between the composite nanotubes. Water droplet testing revealed that this hierarchical surface structure was superhydrophobic. Though the presence of the MWCNTs caused a direct increase in absorption, the hierarchical surface structure increased reflection. The addition of 5 wt% of the anionic surfactant Sodium Dodecyl Benzene Sulfonate to ensure MWCNT dispersal did not significantly change hydrophobicity or light absorption despite the hierarchical surface structure becoming finer. The created composite has potential use as a surface layer on an organic surface cell as it provides reduced cleaning needs and electrical disturbance but further work is required to reduce the reflection.

Funder

Research Grants Council of Hong Kong Special Administrative Region Government

The Hong Kong Polytechnic University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3