Vertical MoS2 on SiO2/Si and graphene: effect of surface morphology on photoelectrochemical properties

Author:

Rosman Nurul Nabila,Mohamad Yunus RozanORCID,Jeffery Minggu Lorna,Arifin Khuzaimah,Kassim Mohammad B,Mohamed Mohd AmbriORCID

Abstract

Abstract Two-dimensional materials have attracted intensive attention recently due to their unique optical and electronic properties and their promising applications in water splitting and solar cells. As a representative layer-structured of transition metal dichalcogenides, MoS2 has attracted considerable devotion owing to its exceptional photo and electro properties. Here, we show that the chemical vapour deposition (CVD) growth of MoS2 on Si photocathode and graphene/Si photocathode can be used to prepare photoelectrocatalysts for water splitting. We explore a bottom‐up method to grow vertical heterostructures of MoS2 and graphene by using the two‐step CVD. Graphene is first grown through ambient-pressure CVD on a Cu substrate and then transferred onto SiO2/Si substrate by using the chemical wet transfer followed by the second CVD method to grow MoS2 over the graphene/SiO2/Si. The effect of the growth temperatures of MoS2 is studied, and the optimum temperature is 800 °C. The MoS2 produced at 800 °C has the highest photocurrent density at −0.23 mA cm−2 in 0.5 M Na2SO4 and −0.51 mA cm−2 in 0.5 M H2SO4 at −0.8 V versus Ag/AgCl. The linear sweep voltammetry shows that MoS2 in 0.5 M H2SO4 has about 55% higher photocurrent density than MoS2 in Na2SO4 due to the higher concentration of protons (H+) in the H2SO4 electrolyte solution. Protons are reduced to H2 at lower overvoltage and hydrogen generation is thus enhanced at higher photocurrent density. MoS2/graphene/SiO2/Si (MGS) has −0.07 mA cm−2 at −0.8 V versus Ag/AgCl of photocurrent density, which is 70% lower than that of bare MoS2 because MGS is thicker compared with MoS2. Thus, MoS2 has potential as a photocatalyst in photoelectrochemical water splitting. The structure and the morphology of MoS2 play an important role in determining the photocurrent performance.

Funder

Universiti Kebangsaan Malaysia

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3