Plant-mediated synthesis of Mn3O4 nanoparticles: challenges and applications

Author:

Zaragosa Gelo PORCID,Ilem Carlo Nonato DORCID,Conde Blessed Isaac CORCID,Garcia JoelORCID

Abstract

Abstract This review focuses on the green synthesis methods, challenges, and applications of manganese oxide (Mn3O4) nanoparticles investigated in the past five years. Mn3O4 nanoparticles offer some unique properties that are attributed in part to the presence of mixed oxidation states of manganese (i.e. +2 and +3) in the particle, which can be utilized in a wide range of redox-sensitive applications, such as in developing supercapacitive energy storage materials. In addition, the green synthesis of Mn3O4 nanoparticles through plant extracts has potential uses in sustainable nanotechnology. Various plant extract-mediated synthesis techniques for Mn3O4 nanoparticles have been investigated and presented. By comparing the size and structure of the synthesized Mn3O4 nanoparticles, we have observed a consistent pattern of obtaining spherical particles with a size ranging from 16 to 50 nm. The morphology of the generated Mn3O4 nanoparticles can be influenced by the annealing temperature and the composition of the plant extract used during the nanoparticle synthesis. Additionally, numerous applications for the greenly produced Mn3O4 nanoparticles have been demonstrated. Mn3O4 nanoparticles derived from plant extracts have been found to possess antimicrobial properties, supercapacitive and electrochemical capabilities, and excellent pollutant degradation efficiency. However, the magnetic properties of these nanoparticles synthesized by plant extracts are yet to be explored for potential biomedical applications. Finally, challenges to existing synthetic methods and future perspectives on the potential applications of these green synthesized Mn3O4 nanoparticles are highlighted.

Funder

University Research Coordination Office, De La Salle University

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3