Atomic layer deposition of SnS2 film on a precursor pre-treated substrate

Author:

Kim Jungtae,Lee Dowwook,Bae Jangho,Lee Taeyoon,Jeon HyeongtagORCID

Abstract

Abstract Two-dimensional (2D) materials are attracting attention because of their outstanding physical, chemical, and electrical properties for applications of various future devices such as back-end-of-line field effect transistor (BEOL FET). Among many 2D materials, tin disulfide (SnS2) material is advantageous for low temperature process due to low melting point that can be used for flexible devices and back-end-of-line (BEOL) devices that require low processing temperature. However, low temperature synthesis method has a poor crystallinity for applying to various semiconductor industries. Hence, many studies of improving crystallinity of tin disulfide film are studied for enhancing the quality of film. In this work, we propose a precursor multi-dosing method before deposition of SnS2. This precursor pre-treatment was conducted by atomic layer deposition cycles for more adsorption of precursors to the substrate before deposition. The film quality was analyzed by x-ray diffraction, Raman, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. As a result, more adsorbates by precursor pre-treatment induce higher growth rate and better crystallinity of film.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3