Relevance of alcoholic solvents in the growth of ZnO nanoparticles and ZnO hierarchical nanorod structures on their optical and opto-electrical properties

Author:

Nagpal KeshavORCID,Rauwel ErwanORCID,Ducroquet FrederiqueORCID,Gélard IsabelleORCID,Rauwel ProtimaORCID

Abstract

Abstract We report on the synthesis of ZnO nanoparticles and ZnO hierarchical nanorod structures using four different alcohols i.e. methanol, isopropanol, ethanol, and aqueous ethanol (70% alcohol, 30% water). The syntheses of the nanoparticles were carried out by non-aqueous and hydrothermal routes. In general, absolute alcohol allows a better control of the synthesis reaction and nanoparticles as small as 5 nm were obtained, confirmed by TEM. XPS analysis elucidated the chemical states that were correlated to the synthesis reaction. For the nanorod growth, these four alcohols were used as seeding solvents, followed by hydrothermal ZnO nanorod growth. Here, the seed layer tailored the nanorod diameters and surface defects, which were studied by SEM and photoluminescence spectroscopy. Subsequently, the ZnO nanorods were electrically characterized and exhibited persistent photoconductivity under UV irradiation of 365 nm. The differences in conductivity in dark and under UV irradiation were attributed to the size of the nanorods, defect states, semiconductor band bending and oxygen adsorption–desorption mechanisms. Parameters such as photoresponse and photosensitivity are also calculated in order to evaluate their applicability in UV sensors. This work demonstrates optimization of the physical, chemical, electrical and optical properties of both ZnO nanostructures via the use of alcoholic solvents.

Funder

European Regional Development Fund project

Eesti Maaülikool

Campus France

NFFA-Europe

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3