Constructing zigzag-like hollow mesoporous nanospheres MoO2/C with superior lithium storage performance

Author:

Zhao Wencai,Yuan YongfengORCID,Yin Simin,Cai Gaoshen,Guo Shaoyi

Abstract

Abstract Hollow mesoporous nanospheres MoO2/C are successfully constructed through metal chelating reaction between molybdenum acetylacetone and glycerol as well as the Kirkendall effect induced by diammonium hydrogen phosphate. MoO2 nanoparticles coupled by amorphous carbon are assembled to unique zigzag-like hollow mesoporous nanosphere with large specific surface area of 147.7 m2 g−1 and main pore size of 8.7 nm. The content of carbon is 9.1%. As anode material for lithium-ion batteries, the composite shows high specific capacity and excellent cycling performance. At 0.2 A g−1, average discharge capacity stabilizes at 1092 mAh g−1. At 1 A g−1 after 700 cycles, the discharge capacity still reaches 512 mAh g−1. Impressively, the composite preserves intact after 700 cycles. Even at 5 A g−1, the discharge capacity can reach 321 mAh g−1, exhibiting superior rate capability. Various kinetics analyses demonstrate that in electrochemical reaction, the proportion of the surface capacitive effect is higher, and the composite has relatively high diffusion coefficient of Li ions and fast faradic reaction kinetics. Excellent lithium storge performance is attributed to the synergistic effect of zigzag-like hollow mesoporous nanosphere and amorphous carbon, which improves reaction kinetics, structure stability and electronic conductivity of MoO2. The present work provides a new useful structure design strategy for advanced energy storage application of MoO2.

Funder

Natural Science Foundation of Zhejiang Province, China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3