Abstract
Abstract
In this study, reduced graphene oxide (rGO) were subject to ultrasonic treatment to acquire varied morphologies, and the enzymatic glucose sensors were constructed by coating the rGO onto indium tin oxide electrodes and physically linking glucose oxidase to the rGO coatings. The effects of the surface morphologies of the rGO coatings on the interfacial characteristics and the electro-catalytic capacity of the enzymatic glucose sensors were systematically investigated. It turns out that, the rGO coating with a rough surface is more hydrophilic, and exhibits uniform glucose oxidase adsorption and higher electron migration rate at the solid/liquid interface between the analytical liquid and the working electrode. As a result, the corresponding glucose sensor shows excellent electro-catalytic capacity towards glucose with a broader linear range of 0–10.0 mM, a higher sensitivity of 38.9 μA·mM−1·cm−2, and a lower detection limit of 0.1 μM (signal-to-noise ratio of 3). Additionally, the as-prepared glucose sensor exhibits excellent accuracy for detecting actual blood samples as well as superior resistance to interference from other substances (such as L-phenylalanine, urea, ascorbic acid, uric acid, NaCl, and KCl). These results establish the theoretical and experimental foundation for the application of rGO coating in the field of biosensors.
Funder
Start-up Funds for Postdoctoral Research
Major Research Plan on Scientific Instruments Development
Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献