Abstract
Abstract
Although the friction characteristics under different contact conditions have been extensively studied, the mechanism of phonon transport at the structural lubrication interface is not extremely clear. In this paper, we firstly promulgate that there is a 90°-symmetry of friction force depending on rotation angle at Si/Si interface, which is independent of normal load and temperature. It is further found that the interfacial temperature difference under incommensurate contacts is much larger than that in commensurate cases, which can be attributed to the larger interfacial thermal resistance (ITR). The lower ITR brings greater energy dissipation in commensurate sliding, and the reason for that is more effective energy dissipation channels between the friction surfaces, making it easier for the excited phonons at the washboard frequency and its harmonics to transfer through the interface. Nevertheless, the vibrational frequencies of the interfacial atoms between the tip and substrate during the friction process do not match in incommensurate cases, and there is no effective energy transfer channel, thus presenting the higher ITR and lower friction. Eventually, the number of excited phonons on contact surfaces reveals the amount of frictional energy dissipation in different contact states.
Funder
Distinguished Youth Fund of Gansu Province
Gansu Postdoctoral Science Foundation
Postdoctoral Science Foundation of Gansu Academy of Sciences
Doctoral Foundation of Lanzhou University of Technology
National Natural Science Foundation of China
Higher Education Research Project of Lanzhou University of Technology
Educational Unveiling Leadership Project of Gansu Province
Applied Research and Development Project of Gansu Academy of Sciences
China Postdoctoral Science Foundation
Innovation Team Building Project of Gansu Academy of Sciences
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献