Synthesis and characterization of pristine and strontium-doped zinc oxide nanoparticles for methyl green photo-degradation application

Author:

Akram Rizwan,Almohaimeed Ziyad M,Bashir Adeela,Ikram MuhammadORCID,Qadir Karwan Wasman,Zafar QayyumORCID

Abstract

Abstract Herein we describe an effective route for the degradation of methyl green (MG) dye under visible light illumination by pristine and strontium (Sr)-doped zinc oxide (ZnO) photocatalysts (synthesized by the simple chemical precipitation method). The x-ray diffraction structural analysis has confirmed that both photocatalysts exhibit the hexagonal wurtzite structure; without any additional phase formation in Sr-doped ZnO, in particular. The optical properties of the synthesized photocatalysts have been investigated using UV–vis absorption spectroscopy in the wavelength range of 250–800 nm. Through Tauc’s plot, the slight decrease from 3.3 to 3.2 eV in band gap energy has been elucidated (in the case of Sr-doped ZnO), which has been further confirmed by the quenching in the intensity of Photoluminescence (PL) emission spectrum. This may be due to sub-band level formation between valence and conduction band, caused by the impregnation of Sr2+ ions into ZnO host. The morphological study has also been performed using Field Emission Scanning Electron Microscope, which indicates nanoparticles (NPs) based surface texture for both photocatalysts. During the photocatalytic activity study, after 30 min irradiation of visible light, ∼65.7% and ∼84.8% photocatalytic degradation of MG dye has been achieved for pristine and Sr-doped (2 wt%) ZnO photocatalysts, respectively. The rate of photocatalytic reaction (K) has been observed to be ∼0.06399 min−1 for Sr-doped (2 wt%), whereas nearly half magnitude ∼0.03403 min−1 has been observed for pristine ZnO, respectively. The significantly improved photodegradation activity may be ascribed to the relatively broader optical absorption capability, surface defects and the enhanced charge separation efficiency of the Sr-doped ZnO photocatalyst.

Funder

Qassim University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference58 articles.

1. Evaluation of photocatalytic fuel cell (PFC) for electricity production and simultaneous degradation of methyl green in synthetic and real greywater effluents;Kee;J. Environ. Manage.,2018

2. Determination of effective parameters on removal of organic materials from pharmaceutical industry wastewater by advanced oxidation process (H2O2/UV);Azizi;Arch Hyg Sci,2016

3. Textile wastewater treatment by homogenous oxidation with hydrogen peroxide;Zaharia;Environmental Engineering and Management Journal,2009

4. Degradation of methyl green by a supported photocatalyst: Economic technique for the depollution;Azizi;International Journal of Chemical and Biochemical Sciences,2020

5. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation;Ratna;International Journal of Environmental Sciences,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3