Quantitative characterization of hierarchical multiscale surfaces of micro and nanostructured materials

Author:

Papavieros GORCID,Constantoudis VORCID,Vouroutzis N,Gogolides EORCID

Abstract

Abstract Hierarchical surfaces have recently attracted a lot of interest, mainly due to their ability to exhibit multifunctionality combining different properties. However, despite the extensive experimental and technological appeal of hierarchical surfaces, a systematic and thorough quantitative characterization of their features is still missing. The aim of this paper is to fill this gap and build a theoretical framework for the classification, identification and quantitative characterization of hierarchical surfaces. The main questions addressed in the paper are the following: given a measured experimental surface how can we detect the presence of hierarchy, identify the different levels comprising it and quantify their characteristics? Special emphasis will be given on the interaction of different levels and the detection of the information flow between them. To this end, we first use a modeling methodology to generate hierarchical surfaces of a wide spectrum of characteristics with controlled features of hierarchy. Then we applied the analysis methods based on Fourier transform, correlation functions and multifractal (MF) spectrum properly designed to this aim. The results of our analysis reveal the importance of the hybrid use of Fourier and correlation analysis in the detection and characterization of different types of surface hierarchy as well as the critical role of MF spectrum and higher moment analysis, in the detection and quantification of the interaction between hierarchy levels.

Funder

Stavros Niarchos Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3