Ohmic contact formation for inkjet-printed nanoparticle copper inks on highly doped GaAs

Author:

Hayati-Roodbari NastaranORCID,Wheeldon Alexander,Hendler Carina,Fian Alexander,Trattnig Roman

Abstract

Abstract GaAs compound-based electronics attracted significant interest due to unique properties of GaAs like high electron mobility, high saturated electron velocity and low sensitivity to heat. However, GaAs compound-based electronics demand a significant decrease in their manufacturing costs to be a good competitor in the commercial markets. In this context, copper-based nanoparticle (NP) inks represent one of the most cost-effective metal inks as a proper candidate to be deposited as contact grids on GaAs. In addition, Inkjet-printing, as a low-cost back-end of the line process, is a flexible manufacturing method to deposit copper NP ink on GaAs. These printed copper NP structures need to be uncapped and fused via a sintering method in order to become conductive and form an ohmic contact with low contact resistivity. The main challenge for uncapping a copper-based NP ink is its rapid oxidation potential. Laser sintering, as a fast uncapping method for NPs, reduces the oxidation of uncapped copper. The critical point to combine these two well-known industrial methods of inkjet printing and laser sintering is to adjust the printing features and laser sintering power in a way that as much copper as possible is uncapped resulting in minimum contact resistivity and high conductivity. In this research, copper ink contact grids were deposited on n-doped GaAs by inkjet-printing. The printed copper ink was converted to a copper grid via applying the optimized settings of a picosecond laser. As a result, an ohmic copper on GaAs contact with a low contact resistivity (8 mΩ cm2) was realized successfully.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3