Highly stretchable strain sensors based on Marangoni self-assemblies of graphene and its hybrids with other 2D materials

Author:

Akouros AntoniosORCID,Koutroumanis NikolaosORCID,Manikas Anastasios CORCID,Paterakis GeorgeORCID,Pastore Carbone Maria GiovannaORCID,Anagnostopoulos GeorgeORCID,Dimitropoulos MarinosORCID,Galiotis CostasORCID

Abstract

Abstract Graphene and other two-dimensional materials (2DMs) have been shown to be promising candidates for the development of flexible and highly-sensitive strain sensors. However, the successful implementation of 2DMs in practical applications is slowed down by complex processing and still low sensitivity. Here, we report on a novel development of strain sensors based on Marangoni self-assemblies of graphene and of its hybrids with other 2DMs that can both withstand very large deformation and exhibit highly sensitive piezoresistive behaviour. By exploiting the Marangoni effect, reference films of self-assembled reduced graphene oxide (RGO) are first optimized, and the electromechanical behaviour has been assessed after deposition onto different elastomers demonstrating the potential of producing strain sensors suitable for different fields of application. Hybrid networks have been then prepared by adding hexagonal boron nitride (hBN) and fluorinated graphene (FGr) to the RGO dispersion. The hybrid integration of 2D materials is demonstrated to become a potential solution to increase substantially the sensitivity of the produced resistive strain sensors without compromising the mechanical integrity of the film. In fact, for large quasi-static deformations, a range of gauge factor values up to 2000 were demonstrated, while retaining a stable performance under cyclic deformations.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3